Skip to main content

Structure of atom (Part 1)

 Even as scientists were confirming the existence of the atoms, they discovered another layer of complexity below atoms. Atoms are made of still smaller particles. Studies of electricity suggested there needed to be something that you could transfer, that carried charge. It was the work of J.J. Thomson, Ernest Rutherford among others that led to advancements in our knowledge of atomic structure.

According to Dalton, an atom is an indivisible, hard,dense sphere. Atoms of the same element are alike. They combine in different ways to form compounds. In the light of Dalton's atomic theory, scientists performed a series of experiments. But in the late 1800's and early 1900's, scientists discovered new subatomic particles.

 •In 1886, Goldstein discovered positively charged particles called protons. 

•In 1897, J.J. Thomson found in an atom, the negatively charged particles known as electrons. It was established that electrons and protons are fundamental particles of matter. Based upon these observations Thomson put forth his “plum pudding” theory. He postulated that atoms were solid structures of positively charge with tiny negative particles stuck inside. It is like plums in the pudding.

Comments

Post a Comment

Popular posts from this blog

Relative Atomic Mass

 Hello readers! Hope you will be fine. Our today's topic is relative atomic mass. let's start! It is the average mass of the atoms of that element as compared to1/12th the mass of an atom of carbon-12 isotope. Based on carbon-12 as a standard, the mass of an atom of carbon is 12 units and 1/12th of it comes to be 1 unit. When we compare atomic masses of other elements with atomic masses of carbon-12 atom, they are expressed as relative atomic masses of those elements. The unit of relative atomic mass unit is amu (Atomic mass unit). One atomic mass unit is 1/12th the mass of one atom of carbon-12.  This was the short intro of Relative atomic mass.  See you next with another topic. Thank you!

Structure of Atom(Part 5)

 Rutherford's Atomic Model: Rutherford performed 'Gold Foil' experiment to understand how negative and positive charges could coexist in an atom. He bombarded alpha particles on a 0.00004  cm thick gold foil. Alpha particles are emitted by radioactive elements like radium and polonium. These are actually helium nuclei (He2+). They can penetrate through matter to some extent. He observed the effects of α-particles on a photographic plate or a screen coated with zinc sulphide. He proved that the 'plum-pudding' model of the atom was not correct.  Observations made by Rutherford were as follows: i.Almost all the particles passed through the foil un-deflected. ii.Out of 20000 particles, only a few were deflected at fairly large angles and very few bounced back on hitting the gold foil. Results of the experiment: Keeping in view the experiment, Rutherford proposed planetary model for an atom and concluded following results: i.Since most of the particles passed through th

Carbon Cycle

CARBON CYCLE: Carbon circulates through the carbon cycle. It shows that carbon may be pres- ent as gaseous atmospheric CO2 constituting a relatively small but highly significant portion of global carbon. Some of the carbon is dissolved in surface water and groundwater as HCO-3 or molecular CO2 (aq). A very large amount of carbon is present in minerals, particularly magnesium and calcium carbonates such as CaCO3. Photosynthesis fixes inorganic C as biological carbon. represented as (CH2O), which is a constituent of all life molecules. Another fraction of carbon is fixed as petroleum and natural gas, with a much larger amount as hydrocarbonaceous kerogen (the organic matter in oil shale), coal, and lignite. Manufacturing processes are used to convert hydro- carbons to xenobiotic compounds with functional groups containing halogens, oxygen, nitrogen, phosphorus, or sulfur. Although a very small amount of total environmental carbon, these com- pounds are particularly significant because of