Skip to main content

Atomic number and mass number

 Hello My dear Readers! 

Hopefully you all are fine and also doing experiments in your life. Let's start our today's topic. Today we will discuss atomic number and mass number. 

Atomic number:

The number of protons present in the nucleus of its atom is called atomic number. Atomic number is represented by 'Z'. All the atoms of an element have same number of protons in their nuclei so thay have same atomic number. Each individual element has specific atomic number that is called identification number. For example hydrogen have 1 proton so it's atomic number is Z=1. In oxygen all atoms have 8 protons, have atomic number Z=8

Mass number:

It is the sum of number of protons and number of neutrons present in the nucleus of an atom. It is represented by 'A'. 
It is calculated as:
        A=Z+n
Where n is number of neutrons. 
For example: hydrogen atom has on proton and no neutron in its nucleus, its mass number A = 1 + 0 = 1 . Carbon atom has protons and 6 neutrons, hence its mass number A = 12.


This was the short view of atomic number and mass number. I hope you get the concept. See you soon. Thank you. 

Comments

  1. Well-done! More achievements are yet to come! Keep working.

    ReplyDelete

Post a Comment

Popular posts from this blog

Relative Atomic Mass

 Hello readers! Hope you will be fine. Our today's topic is relative atomic mass. let's start! It is the average mass of the atoms of that element as compared to1/12th the mass of an atom of carbon-12 isotope. Based on carbon-12 as a standard, the mass of an atom of carbon is 12 units and 1/12th of it comes to be 1 unit. When we compare atomic masses of other elements with atomic masses of carbon-12 atom, they are expressed as relative atomic masses of those elements. The unit of relative atomic mass unit is amu (Atomic mass unit). One atomic mass unit is 1/12th the mass of one atom of carbon-12.  This was the short intro of Relative atomic mass.  See you next with another topic. Thank you!

Structure of Atom(Part 5)

 Rutherford's Atomic Model: Rutherford performed 'Gold Foil' experiment to understand how negative and positive charges could coexist in an atom. He bombarded alpha particles on a 0.00004  cm thick gold foil. Alpha particles are emitted by radioactive elements like radium and polonium. These are actually helium nuclei (He2+). They can penetrate through matter to some extent. He observed the effects of α-particles on a photographic plate or a screen coated with zinc sulphide. He proved that the 'plum-pudding' model of the atom was not correct.  Observations made by Rutherford were as follows: i.Almost all the particles passed through the foil un-deflected. ii.Out of 20000 particles, only a few were deflected at fairly large angles and very few bounced back on hitting the gold foil. Results of the experiment: Keeping in view the experiment, Rutherford proposed planetary model for an atom and concluded following results: i.Since most of the particles passed through th

Carbon Cycle

CARBON CYCLE: Carbon circulates through the carbon cycle. It shows that carbon may be pres- ent as gaseous atmospheric CO2 constituting a relatively small but highly significant portion of global carbon. Some of the carbon is dissolved in surface water and groundwater as HCO-3 or molecular CO2 (aq). A very large amount of carbon is present in minerals, particularly magnesium and calcium carbonates such as CaCO3. Photosynthesis fixes inorganic C as biological carbon. represented as (CH2O), which is a constituent of all life molecules. Another fraction of carbon is fixed as petroleum and natural gas, with a much larger amount as hydrocarbonaceous kerogen (the organic matter in oil shale), coal, and lignite. Manufacturing processes are used to convert hydro- carbons to xenobiotic compounds with functional groups containing halogens, oxygen, nitrogen, phosphorus, or sulfur. Although a very small amount of total environmental carbon, these com- pounds are particularly significant because of